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Curvature and Tangency Handles for
Control of Convex Cubic Shapes

G. Figueroa, M. Paluszny, and F. Tovar

Abstract. We consider the problem of modelling a plane convex shape
with a closed component of an algebraic non-singular cubic. All nine
degrees of freedom are interpreted as visual handles, namely: tangency to
three prescribed lines at three given points and the curvatures at these
points.

§1. Introduction

Algebraic curves, beyond conics, where introduced in CAGD by Sederberg
[6] in 1984. Paluszny and Patterson [1-3] studied splines constructed with
segments of cubic algebraic curves, called A-splines. Tovar, Paluszny and
Patterson [4] looked at A-splines constructed with segments of singular al-
gebraic cubics, which are just rational cubics, with new, geometrically more
meaningful, control handles for their shape. Non-singular cubics are classi-
cally well-known objects Salmon [5]. Projectively they could be of two types:
two or one circuit cubics. A two circuit cubic consists of two pieces, one of
which can be realized affinely as a convex closed curve, called an oval.

The goal of this paper is to study the feasibility of using ovals to model
plane convex shapes. We remark that ovals are not splines, they are C'
curves. Therefore, the main advantage of using ovals for modelling of convex
shapes is that no stitching of segments is required, which would be the case
for splines. In fact, a convex shape represented by a cubic oval doesn't have
any joints at all. It seems natural to place the study of cubic ovals within the
context of A-splines because they are connected components of cubic algebraic
curves. Moreover, the techniques to study the shape handles for their control
are similar to those used for A-splines as mentioned above. In particular,
we want to control the shape of an oval through its control triangle, contact
interpolation, and curvatures at three prescribed points, see Figures 1-4.
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Fig. 1. Shape control by moving vertices of the control triangle.

Fig. 2. Shape control by moving one of the tangency points.

I'

Fig. 3. Shape control by moving two of the tangency points.

Fig. 4. Sharpening the curvature at one contact point.

§2. Barycentric Coordinates and Curvature at the Endpoints

The general algebraic cubic in cartesian coordinates x, y is given by

F(x, y) = a30 x 3 + a03Y3 + a21x 2y + a12XY2 + a20x 2 + a 02y2

+ alxy + alox + aoly + aoo.
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(x1 ,yi)

(x0,y0) (x2,yd)

Fig. 5. Cubic with two prescribed tangencies.

If the cubic interpolates two points (xo, Yo) and (x2, y2), and it is tangent
to two lines joining these points to a third point (xi, Y) as shown in Figure
5, then its expression in terms of the barycentric coordinates (S, T, U) with
respect to the triangle of vertices (xO, yo), (xi, Yi) and (x 2, Y2) reduces to

F(S, T, U) = aS2 U + bSU 2 - cST 2 - dT 2U + eSTU + fT 3  (1)

where a, b, c, d, e and f are arbitrary real coefficients. This was observed by
Sederberg [6]. In Paluszny and Patterson [2] it was shown that the curvatures
k, and k, of (1) at (xo, Yo) and (x 2, Y2) are given by

- c A
a (V/(xl - xo) 2 + (Yi - yo) 2 )3

d A
b (/(xl - x2)2 + (yy - y2)2)3

where A is the area of the triangle with vertices (xo, yo), (xi, y1 ) and (x2, Y2).

§3. Three Prescribed Contacts

We now focus on the family of cubics with three prescribed contacts. Consider
a triangle of vertices Po, P1 and P2 , and let (s, t, u) be the corresponding
barycentric coordinates. Choose one point on each side, as shown in Figure 6.

The barycentric coordinates of each Qi are Qo = Qo(O, to,uo), Q, =
Q,(si, 0, ul), and Q2 = Q2 (s2 , t 2, 0). The general equation of a cubic passing
through these points and tangent (or singular) at them to the sides of the
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Fig. 6. Barycentric coodinates of side points.

\ ~/'

/\

Fig. 7. Wrong contacts.

triangle is
(s8a300 - 2ao30t3)st 2

G(s, t, u) =a300s + ao03t + a0 0 3u +t3 )S~t (t3 .3

(ao3Ot2 - 2s3a 3OO)s 2t a(ta03O - 2aoo 3 3)tu 2+ . t2 + to 0

(aoo3u3 - 2t3ao3O)t 2u (s3a300 - 2aoo 3u3)su 2

-•-t20U0 SlU2

(ao0 3u3 - 2s1a 30O)s 2 u+ 2 -l + aluistu.

Note that there are four free homogeneous parameters. These have to be used
for two purposes:

"* to guarantee that the cubic is actually a two circuit cubic and that the
interpolation occurs at points of the oval,

"* to express the free parameters in terms of the curvatures at the interpo-
lation points, and find interval ranges for their meaningful modification.
The first point is crucial because we need to preclude situations in which
the contacts occur at points off the oval, as illustrated in Figure 7.
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§4. Curvatures at the Contact Points

We need to control the curvatures at the interpolation points. The first step
will be to find formulas for the curvatures in terms of the free parameters a 300,
a 030 , a0 03 and a111 of the cubic, as expressed in the barycentric coordinates
(s, t, u). In the next section we will produce inversion formulas for the aijk in
terms of the curvatures, which will allow us to find oval shapes with prescribed
curvatures at the prescribed contacts. It will be convenient to express the
curvatures k, and k. at Q2 and Q0 respectively, in terms of the barycentric
coordinates s, t, u with respect to Po, P1 and P2. As remarked in the previous
section

- cI AI
ai (P71Q0) 3

where A, is the area of triangle I, P1 Qo denotes the distance between P1 and
Qo, and a,, bi, c, and di, are the coefficients of the cubic in the barycentric
coordinates with respect to Q2, P1 and Qo, compare with (1). And similarly

- di AI

b, (P 1Q 2)3

In fact if a, b, c, d, e, f are the coefficients of the cubic in the barycentric
coordinates with respect to the triangle PoP1P 2 as expressed in (1), then the
coefficients a,, b1 , ci and d, of this cubic with respect to the triangle I of
vertices Q2, P1 and Qo are obtained by a linear change of variables:

uOul(a 2 2- / 2 )ao0 3 -- t0s.1(2a 300uos 2 + 2toao30t2ul - alllS2t 2uoul)
= S2U1t2

2al t2U t2U U2

s 2 1 (a + )a3oo - t1u (2ao3a oS1t2 + 2S2 oaoo3 u1 - allSAtouoi)t2S1 U2

where a = UlsAto, 3 = uot 2s1 , and

ao a t3 + s~a3 oo
CI a0O t2 2a ,

d, a003u° + a0 3 t0t2

Using the relationship between the areas of the triangles PoP 1 P 2 and
Q 2P 1 Qo as illustrated in Figure 6, it follows that ku and k, can be expressed
directly in terms of the geometry of the triangle PoPIP 2 :

ku- 4c, uo Aa 2(2

- 4di s 2  A
= b u2(pp 2)3(3)
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Fig. 8. Curvatures at the contact points.

where A is the area of the triangle PoP 1 P 2. To compute the curvature kt at
Q, with barycentric coordinates (sl, 0, ul), we consider triangle II to get

- 4d 1 t 2  Abii u2 (Po•P2 )3 " (4)

It is easy to show that using triangle III instead, we obtain the same expression
for kt.

Figure 8 illustrates the relationships between the coordinates of contact
points Qo, Q, and Q2 and curvatures k,, kt and ku.

§5. Inversion Formulas and Shape Control

Equations (2)-(4) can be rewritten as

kuS2ai - uocI = 0

k~u~bi - sod, = 0

ktulai - t2cII = 0,

where the a, b, c, d coefficients are given in terms of a300, a030, ao03, and a111
and k5, kt and ku are proportional to the curvatures k,, kt and ku, i.e.

- 3 3 - 3
- APip -7 Pp2  T- Pp2ku = ku A I0------t A A k, ---k,

The formulas for the aijk in terms of k8, kt and ku are

a300 = u1t (ktku(a + 3)3(sis 2 - touo(a + /)k•)

+ ult 2(tu0k, - s2tok3 I s kt)),
a030 = u~s•(k~ku(a + 03) 3 (tot 2 - slul(a + /3)kt)

+ 383uskt _ U~t~k, _-3tk
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a003  0ts (kskt(a + 0) 3 (uoul - t2s2(a + O)k,)

+ sito(s t ku - t3u3k8 - s u kt)), (5)

all, = (a + 0)
3 (ksktk,(a + 3)((a - 0)2 - 2a/)

+ 2k kt utos5u1 + 2ksk, uotot2s 2 + 2t2ss2 u 2kk)

3(a 2 + 8 2)(tot2S2 sik + Uotot 2u1 k, + uos 2s2u2kt)
+ (a + 0)(( _ '6)2 + ao).

As established above, see Figure 7, further constraints are required for the
contacts to occur at points of the oval, and for the latter to be contained
inside the triangle PoP1 P2 . Given the points Qo, Q, and Q2, (2) determines
a cubic which is tangent to the sides of triangle PoP 1 P 2 at these points. To
guarantee that the points Qo, Q, and Q2 lie on the oval it is sufficient that the
coefficients a 300, a 030 and ao0 3 have the same sign. Indeed, the first condition
implies that the third intersection of the cubic with each of the lines s = 0,
t = 0 and u = 0 occurs outside the triangle. Since each contact Qj accounts for
two intersections, if the cubic at every Qj bends inwards the triangle PoP 1 P 2 ,
then the contacts actually occur at points of the oval of the cubic which then
has to lie inside the triangle. The positivity of k,, kt and k, guarantees that
the curve bends towards the interior of the triangle, see [3].

Given the contacts at Qo(O,to,uo), Ql(si,O,ul) and Q2 (s2 ,t 2 ,0), see
Figure 6, for ao03, a030 and ao03 to have the same sign, it is enough to take

=o 8 281

touo(a +/3)'

° Ulsl(a +,6)' (6)

kUO _ uouJ

s 2t2(a + +)
Note that given an oval with three prescribed curvatures, when we fix

two of them the equations for the aijk in terms of the third are linear. So, it
is easy to find an interval range for the modification of the third curvature,
while keeping the coefficients a 3 00, a 03o and a0 03 of the same sign.

§6. Conclusion

A convex shape can be modelled with a cubic oval controlled by a triangle that
contains it. By moving the vertices, we drag the oval along (see Figure 1).
Moreover, given any triangle and three points, one on each of its sides, we can
produce a convex shape that contacts the triangle at these points. This convex
shape is our cubic oval. Furthermore, we can prescribe the curvatures at these
three points, within precisely defined conditions. If we fix two curvatures, the
third curvature can be modified within an interval which can be computed by
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solving a system of linear inequalities. In fact given the vertices of the control
triangle, the contact points at its sides and the three initial curvatures kV, k°
and k° as given by (6), it is always possible to modify any of them keeping
the other two fixed.

This entails solving the linear inequalities a 3 00 > 0, a03O > 0 and a003 > 0,

or a 300 < 0, a03O < 0 and a003 < 0 given by the linear system (5).
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